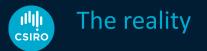




The journey to change minerals exploration using ultrafine soils and data analytics

Ryan Noble (on behalf of many)





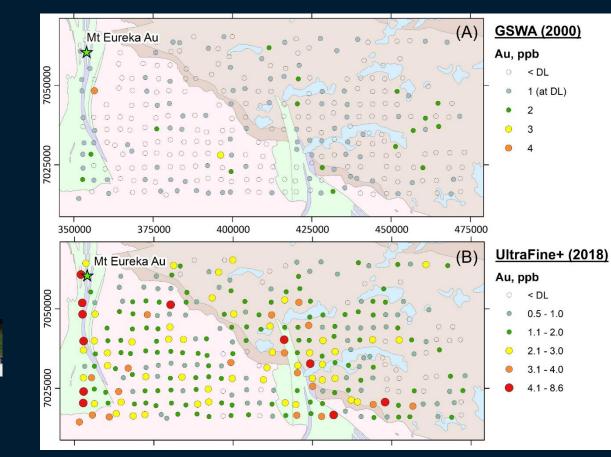
Modified from Nick Oliver, HCOV Consulting

Modified from Nick Oliver, HCOV Consulting

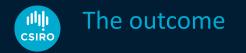
The solution

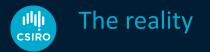
• Current "best" offering for commercial laboratories

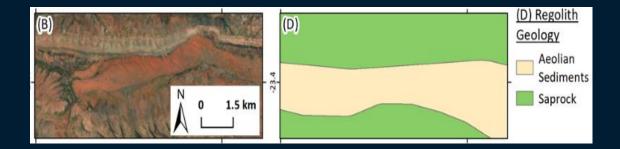
1	A	8	С	D	E	F	G	н	I	J	K	L	M	N	0	Р	Q	R	S	Т	U	^ ۷
10	Element		Ag	AI	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu	Dy	Er	Eu	Fe	Ga	Gd	Ge
11	Units		ppm	ppm	ppm	ppm	ppm	ppm -														
12	DL		0.01	10	0.5	0.2	0.2	0.1	10	0.05	0.05	0.2	2	0.1	0.2	0.02	0.05	0.02	100	0.05	0.05	0.05
13	Method		T-AP-004	T-AP-004	T-AP-004	T-AP-004	T-AP-004	T-AP-														
14	ClientID/Scheme	SAMPLE ID	MMA04	MMA04	MMA04	MMA04	MMA04	MMA														
15	07-33381	NBD -OS-01	0.10	12.2%	20.6	48.7	0.8	2.1	3820	< 0.05	21.3	2.9	258	0.7	68.7	1.36	0.68	0.42	19.5%	50.9	1.56	0.74
16	07-33382	NBD -OS-02	0.11	14.1%	27.3	43.0	1.0	2.9	1410	< 0.05	21.0	3.0	320	0.9	67.2	1.41	0.70	0.42	24.7%	58.5	1.62	0.82
17	07-33383	NBD -OS-03	0.11	13.4%	28.3	39.3	0.9	2.9	2250	< 0.05	20.8	3.0	289	0.8	77.0	1.35	0.69	0.41	24.5%	58.6	1.56	0.82
18	07-33384	NBD -OS-04	0.10	12.4%	24.8	43.4	1.0	2.6	1510	< 0.05	15.6	2.9	321	0.8	61.8	1.14	0.58	0.35	21.8%	59.1	1.24	0.80
19	07-33385	NBD -OS-05	0.10	13.5%	32.1	43.2	1.0	2.7	1310	< 0.05	25.6	2.5	324	1.1	51.8	1.53	0.75	0.48	24.5%	59.9	1.77	0.77
20	07-33386	NBD -OS-06	0.10	13.0%	30.3	41.7	1.0	2.6	1400	< 0.05	18.0	2.5	319	0.8	51.3	1.27	0.59	0.40	26.8%	63.2	1.42	0.75
	 PL-05 	T-AP-004 MMA04	۲		,		,	,					E .			·			, ,	·	·	•
REA	DY																COUNT: 63		8 🗉		+	100%



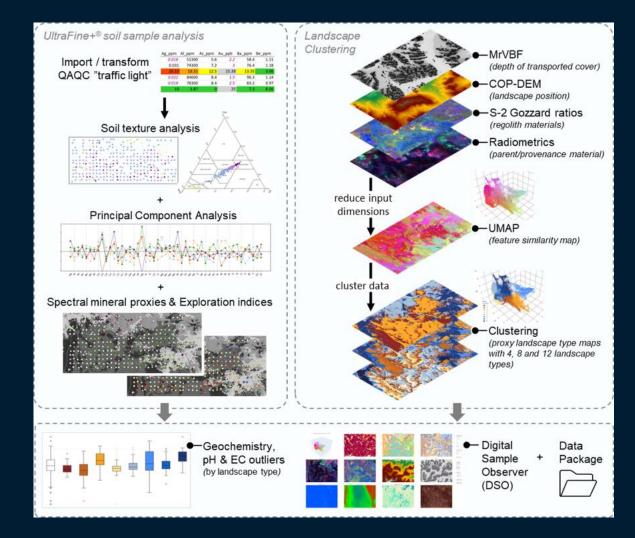
A	В	С	D	E	F	G	н		I	J	K	L	М	N	0	P	Q	R	S	T	U	V			1 - Andrews	
1 Line	LocalX	LocalY	Easting M	Northing	Sample D	Commen	t Element	A	g A	l As	Au	J B	la E	Be B	i C	a C	d C	e C	o C	r C	s Ci	u i			0	-
2	1 1987	5 50600	583218.6	6904667	5-10kg su	rface soil	15GYS000	01	0.05	113000	7.9	3.3	79.6	1.9	0.4	1920	0.08	46.7	15.6	105	5.7	25		-		-
3	1 1990	0 50600	583242.1	6904676	5-10kg su	rface soil	15GYS000	02	0.05	103000	7.8	3.3	84.4	1.8	0.4	5930	0.08	47.2	14.3	108	5.2	28				STATISTICS.
4	1 1992	5 50600	583265.6	6904684	14GYRC00	63	15GYS000	03	0.04	78000	7.7	2.5	61.3	1.6	0.4	2950	0.07	39.3	11.3	98	4.6					
5	1 1995	0 50600	583289.1	6904693	15GY0134	first m RC	15GYS000	14	0.05	71900	7.8	2.6	53	1.5	0.4	1800	0.07	37.5	12	98	4.6	29				
6	AU	AV	AW	AX	AY	AZ	BA	BB	BC	BD	BE	BF	BG	BH	BI	BJ	BK	BL	BM	BN	BO	BP	E 🔺			1.1.1
7	Та	те	Th 1	Ti 1	ri	U	v	w	Y	Zn ä	Zr	Weight	рН	EC	Sequence	<0.2 µm	<2 µm	2 -50 µm	50-125 µn	125-250 µ	Result In F	Result Abd	Spei	1000000		
8	< 0.01	< 0.2	14.8	706	0.6	1.02	139	0.4	14.3	57.9	25	39.93	6.91	25.75	233	37.37455	53.79097	36.29036	4.930748	0.907594	3.888241	0.153209	37		- sulf	
	< 0.01	< 0.2	13.8	696	0.5	0.98	138	0.4	13.6	49.3	22	40.28	7.08	3 52.02	235	25.94091	39.72478	45.85444	8.981279	2.538566	2.745024	0.117757				
	< 0.01	< 0.2	13.4	619	0.5	0.93	130	0.4	11.6	39.1	21	39.77	6.97	7 24.53	236	32.25853	48.02374	40.72972	3.956541	1.026748	5.845989	0.375384	297		(1. puse	
	< 0.01	< 0.2	13.7	578	0.5	0.92	134	0.4	10.9	35.2	21	40.16	6.89	23.6	237	38.23632	54.27159	35.18423	3.422889	0.765184	5.937452	0.384407	381		70	
	< 0.01	< 0.2	12.5	565	0.4	0.85	122	0.4	9.9	38.5	20	40.08	6.85	5 24.11	238	35.91347	52.24549	42.27413	4.225678	0.772441	0.440415	0	338			
	< 0.01	< 0.2	12.9	618	0.5	0.94	132	0.4	10.7	40.7	21	40.34	6.5	31.01	239	36,11812	51.35606	38,92852	6.10149	1.257467	2.188788	0.132922	358	1		
	< 0.01	< 0.2		BQ	BR	BS	BT	BU	BV	BW	BX	BY	BZ	CA	CB	CC	CD	CE	CF	CG	CH	CI	CJ	CK	CL	0
			1	Specific St	Dx (10)	Dx (50)	Dx (90)	Sample N	Min1 sTS	Wt1 sTSA5	Error sTSA	kaolin ab	1400D_3	p12200AR_3	Water ab	l ferric oxi	dhem/goe	colour pl	a Albedo	Min1 sTS	A Wt1 sTSA	Error sTSA	(((1000R)	1380D w	rmAlsma wr	n/
			2	37976.8	0.054406	1.016206	49.24355	FSFR.1829	Kaolinite	0.569	57.034	0.253	3 0.13	5 16.505	0.163	0.089	7 893.3	5YR 4/4	0.284	NULL	NULL	NULL	0.837	0.00842 N	ULL NU	JU 🤇
			3	23333	0.078692	4.972019	72.43388	FSFR.1829	Kaolinite	0.576	78.643	0.294	4 0.15	7 19.213	0.257	0.096	1 895.2	5YR 3/2	0.181	NULL	NULL	NULL	0.806	0.0105 N	ULL NU	JL A
			4	29700.16	0.066311	2.487504	60.94927	FSFR.1829	Kaolinite	0.71	81.155	0.284	4 0.16	3 18.649	0.259	0.10	894.4	5YR 3/4	NULL	NULL	NULL	NULL	0.887	0.0113 N	ULL NU	
			5	38177.68	0.054618	0.685788	54.94152	FSFR.1829	Kaolinite	0.592	44.691	0.207	7 0.11	6 13.627	0.183	0.077	8 893.0	5 5YR 4/4	NULL	NULL	NULL	NULL	0.875	0.00622 N	ULL	The Local Division of the
			6	33820.93	0.060499	1.433667	29.53599	FSFR.1829	Kaolinite	0.683	81.21	0.326	6 0.1	7 21.478	0.275	0.10	5 895.62	5YR 3/4	NULL	Hematite	0.526	245.69	0.828	0.0116 N	ULL NU	JL BERGER
			7	35810.83	0.056967	1.585926	48.43578	FSFR.1829	Kaolinite	0.547	66.452	0.249	9 0.13	7 16.113	0.238	0.080	\$ 895.12	5YR 3/4	NULL	NULL	NULL	NULL	0.809	0.00778 N	ULL NU	JL STATE
			8	25338.1	0.073752	4.465595	62.60766	FSFR.1829	Kaolinite	0.501	59.575	0.242	2 0.13	2 15.538	0.232	0.076	5 894.4	5YR 3/4	NULL	NULL	NULL	NULL	0.862	0.00695 N	ULL	
																									1000	and the second

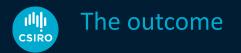


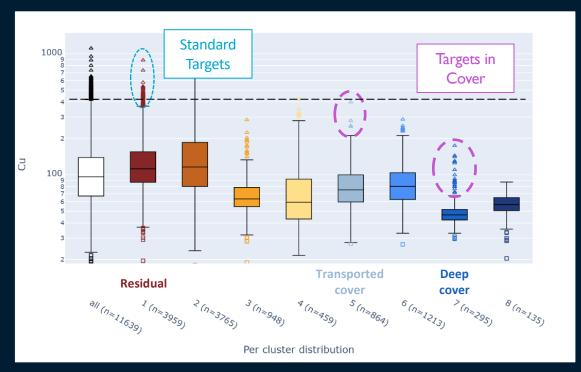

- End of M462
 - ~3000 samples
 - \uparrow 250% Au and pathfinder elements, \downarrow bdl especially for Au, added Pd and Pt
 - Au focus (with a little Cu Zn test work)
 - Proof of concept and commercial viability
 - Translation to commercialised lab and trademark
- M462a?...
 - Now how can we improve the interpretation (for SMEs)?
 - Geochemistry and landscape knowledge
 - Challenge was funding to be bigger and bolder SMEs can't do this even collectively

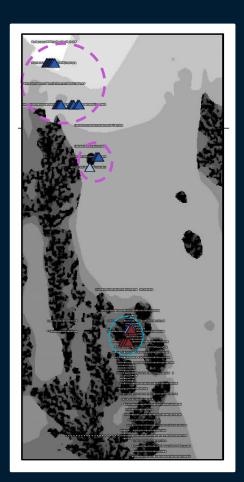


- M462a?... How can we improve the interpretation (for SMEs)?
 - Geochemistry and landscape knowledge
 - Funding challenge to be bigger and bolder SMEs can't do this

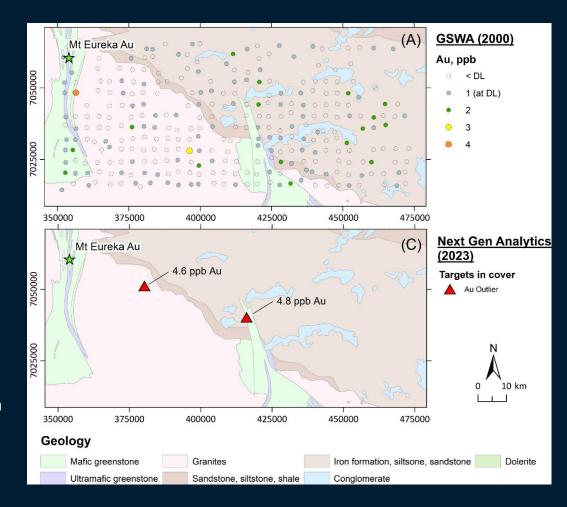


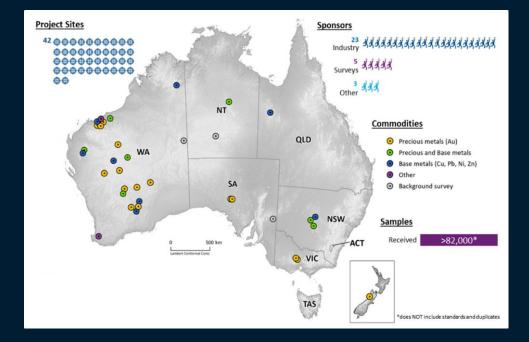






The solution



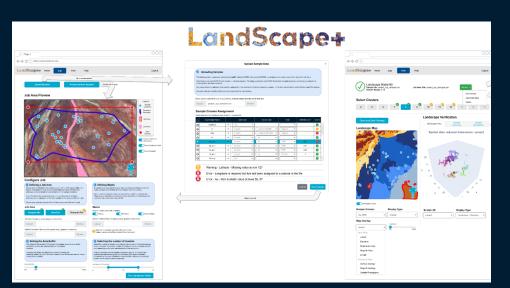

+ PCA, exploration indices, regolith ratios, spectral parameters
+New targets, new interest, new commodities

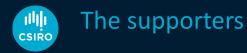


• End of M462a

- Viable for nearly all critical metals in cover (tested Li, REE, PGE)
- Next Gen Analytics data package
- SME uptake




- LabWest ~2000 samples A WEEK
- LabWest staff expanded from 6 to 45



M462b? Probably not now, but will reload for a new challenge

Australia's National Science Agency

The UltraFine+[®] CSRIO Team

Mineral Resources Ryan Noble

Ryan.Noble@csiro.au 08 6436 8684

